
Elastic Site
Using Clouds to Elastically Extend Site Resources

Paul Marshall
Department of Computer Science
University of Colorado at Boulder

Boulder, CO USA
paul.marshall@colorado.edu

Kate Keahey1,2 and Tim Freeman1
1Computation Institute, University of Chicago

2Argonne National Laboratory
Chicago, IL USA

keahey@mcs.anl.gov and tfreeman@mcs.anl.gov

Abstract— Infrastructure-as-a-Service (IaaS) cloud computing
offers new possibilities to scientific communities. One of the most
significant is the ability to elastically provision and relinquish
new resources in response to changes in demand. In our work, we
develop a model of an “elastic site” that efficiently adapts services
provided within a site, such as batch schedulers, storage archives,
or Web services to take advantage of elastically provisioned
resources. We describe the system architecture along with the
issues involved with elastic provisioning, such as security,
privacy, and various logistical considerations. To avoid over- or
under-provisioning the resources we propose three different
policies to efficiently schedule resource deployment based on
demand.

We have implemented a resource manager, built on the Nimbus
toolkit to dynamically and securely extend existing physical
clusters into the cloud. Our elastic site manager interfaces
directly with local resource managers, such as Torque. We have
developed and evaluated policies for resource provisioning on a
Nimbus-based cloud at the University of Chicago, another at
Indiana University, and Amazon EC2.

We demonstrate a dynamic and responsive elastic cluster,
capable of responding effectively to a variety of job submission
patterns. We also demonstrate that we can process 10 times faster
by expanding our cluster up to 150 EC2 nodes.

Cloud computing, Infrastructure-as-a-Service

I. INTRODUCTION
Typical computing resources, including everything from a

single server to a supercomputer, offer a static and finite set of
computational, network, and storage capacity to users. Initially,
a resource is purchased with an estimate for its peak capacity
with the hope that the average load on the resource stays well
below that estimate. However, while the computational,
network, and storage capacity of the resource is static, the
demand is dynamic. There are times when users or system
administrators need to find additional resources to meet their
demands, e.g. to meet a paper deadline [3], handle the
increased need for computation or storage during an
experiment, or process increased Website traffic during the
holiday season.

Historically, system administrators could only purchase
more physical resources when the load of a particular resource
increased beyond its maximum capacity. However, it is
difficult to estimate the times when the demand will exceed the

capacity of the resource, most often it is only realized when the
system crashes under the load. This results in user frustration
and possibly the loss of user data or business. Purchasing
additional physical resources is a very cumbersome process
and usually involves a large amount of time and money: nodes
must be ordered, delivered to the site, setup and configured,
added to the cluster and continually maintained. These steps
can take weeks, if not months to complete. If additional
resources are purchased it is likely that their regular usage will
be below peak usage, leaving resources underutilized or idle
while still drawing power and costing the organization money.

With Grid computing [7] it became possible to leverage
existing resources at remote sites when additional capacity was
required. Although many applications can leverage the Grid
model, Grid computing has a number of constraints that have
limited its adoption. A fundamental assumption that Grid
computing makes is that the control over the mode in which
remote resources are provided is with the remote site. Grid
users are not typically given root on remote resources for
security reasons, and thus it is not always possible to deploy
custom software stacks or databases required by the
application. Users also face a potentially infinite set of diverse
resources that they must port their applications to and validate
on. Finally, the Grid doesn't offer a way for users to gain access
to Grid resources on demand.

Cloud computing enhances the mechanisms for sharing of
remote resources by providing users with control over the
remote resources (e.g. control over their configuration). Clouds
also provide a virtualized platform for users to create and
manage the software stack from the operating system to the
applications. This particular type of cloud is known as an
Infrastructure-as-a-Service (IaaS) cloud, as opposed to
Platform-as-a-Service (PaaS) or Software-as-a-Service (SaaS)
clouds. The customizability, complete control over the software
stack, and on-demand access to IaaS clouds make them an
attractive solution to the problem of dynamically extending the
resources of a static site to adjust to changes in demand.

Elastically extending sites with cloud resources poses a
number of challenges that must be addressed. First, leveraging
remote resources highlights the following security concerns:
how can we establish trust between the site and the added
remote nodes? How can we provide an environment that would
allow us to project assumptions underlying security
mechanisms within the site onto a wide-area network?

Numerous logistical considerations must be addressed. In
particular, remote nodes that are provided on-demand must be
automatically configured to join the site and perform their
required role (e.g. a cluster worker node). We must also be able
to correctly identify when nodes are required, the duration for
which they will be needed, how many nodes should join the
site, and which cloud providers should be utilized. These
decisions must balance the cost of integrating remote nodes
from different cloud providers with the need to efficiently
process the demand. The cost of integrating cloud nodes is not
simply the monetary cost, although that may be one factor, the
cost is also the associated overhead (execution, I/O, or network
latency) of different cloud providers.

In our research, we propose a model to elastically extend a
site by integrating remote cloud resources on demand. Our
model is neither application- or cloud-specific, instead we
propose an additional layer capable of monitoring the demand
of applications and responding by acquiring or releasing cloud
nodes. We implement and evaluate an elastic site manager,
built on the Nimbus toolkit [11], to dynamically and securely
extend existing physical clusters with IaaS cloud resources.
Our elastic site manager interfaces directly with local resource
managers, such as Torque [5]. We discuss our implementation
in detail, including specifics about how we addressed the
applicable challenges previously mentioned. We also develop
and evaluate policies for resource provisioning on a Nimbus-
based cloud at the University of Chicago (UChicago), another
at Indiana University (IU), and the Amazon Elastic Compute
Cloud (EC2) [2].

We demonstrate a dynamic and responsive elastic cluster,
capable of responding effectively to a variety of job submission
patterns. We also demonstrate that we can process 10 times
faster by expanding our cluster up to 150 EC2 nodes.

The remainder of the paper is organized as follows. In
Section II we discuss the general approach of extending
resources within a site and present our elastic site model, and in
Section III we discuss our elastic site implementation for
extending a batch scheduler with IaaS resources. We evaluate
our implementation in Section IV, in Section V we discuss the
related work in the field, and in Section VI we hypothesize
possible avenues for future work. We conclude in Section VII.

II. APPROACH
In order to respond to changing demand a site could be

extended in numerous ways. One option would be to modify
individual applications so that they are able to locate, acquire,
and utilize additional resources when they need them. For
example, a batch scheduler (e.g. Torque) could be modified to
boot a set of Virtual Machines (VM) in the Cloud and dispatch
jobs to those VMs. However, the obvious downside to this
approach is the requirement that every such application or
piece of middleware be modified, resulting in applications
possessing redundant functionality. A second, more extensible
option would be to build an additional layer, separate from the
applications, which is capable of measuring their workload and
acquiring or releasing cloud resources when needed. This
option allows any application to be extended, creating an
elastic site.

We have created an elastic site model that efficiently adapts
services within a site, such as batch schedulers, storage
archives, or Web services to leverage elastically provisioned
IaaS cloud resources in response to changes in demand as
shown in Figure 1. In order for the elastic site to make
intelligent decisions, various technical, logistical, and
economic differences between cloud providers must be
considered. Simply acquiring the maximum resources needed
to handle an increase in demand may be technically feasible,
however, it may not make sense financially. Cloud nodes must
also be preconfigured to perform a role within the site once
launched, or they must be configured dynamically as they are
launched.

We focus specifically on integrating our elastic site
architecture with a batch scheduler where additional worker
nodes are dynamically acquired or released from a cloud based
on changes in the cluster job queue. This design limits the
amount of interaction a user must have with such a system.
While a user would undoubtedly be aware that the system
leveraged cloud resources to execute his or her jobs, the user
wouldn’t be required to know the specifics about the
underlying cloud, nor how to integrate cloud nodes securely. A
user would simply submit their jobs to the queue in order to use
elastic site. In the following section we describe the process of
manually adding a physical node to a cluster, much of which
must be automated for elastic site.

A. Adding a Worker Node to a Cluster
Assuming the node has already been purchased and

delivered to the site, an operating system must then be installed
on the node. Once installation is complete the node will need
the necessary patches applied to it and be configured properly,
for example, unnecessary services should be terminated.
Required software and libraries will need to be installed, most
likely including the cluster's version of MPI and common
scientific libraries. The node will also need file systems
mounted (if necessary). At this point the cluster software will
need to be installed on the node and configured to
communicate with the cluster head node. If the node will not
utilize a shared file system then the cluster software will need

Figure 1. Elastic Site Model

to be configured to support the exchange of input and output
data. If the cluster is using any licensed software then licenses
for the node would need to be acquired.

In order to dynamically add a node to a site, similar steps
must be performed. However, for IaaS cloud nodes, the vast
majority of these steps can be performed offline and only once.
For instance, we can create one VM image offline installing the
operating system, applying patches, configuring services, and
adding software and libraries. This base image can then be used
on multiple clouds without modification. The remainder of the
steps can only be completed when the node is actually
deployed on a specific cloud, which we address in the
following section.

B. Contextualization
Contextualization of the node can only be performed when

the node has been deployed in a particular context. The node
must be configured to communicate properly with the site, such
as configuring the remote node to exchange input and output
data with the cluster head node or mounting a shared file
system on the remote node. Additionally, a secure context must
be established between the remote nodes and the site resources.

One solution to address contextualization that has been
developed by the community is the Nimbus Context Broker
[13]. Generally, the Context Broker is a Web Service that
facilities the secure exchange of context-specific information
(e.g. IP addresses, SSH keys, etc.) between all appliances
deployed together in a specific context. Each appliance
contains a contextualization agent that securely communicates
with the Context Broker on boot and configures the appliance
to fulfill a specific role within the context. For example, a
cluster of nodes may be launched in the cloud where one node
is configured as a cluster head node and the remaining nodes
are configured as compute nodes. The contextualization agent
in each node provides the node’s SSH key and IP address to the
Context Broker, which then communicates it to the other
nodes. Once a node receives the information for the other
nodes, the contextualization agent completes the configuration
of the node as either a compute node or the cluster head node,
depending on the role that was specified.

C. Architecture and Policies
Elastic site dynamically adds and removes worker nodes

from the cluster by monitoring the cluster job queue. As part of
elastic site we have developed a queue sensor that examines the
cluster job queue and maintains a complete picture of the
queue, including total number of jobs in the queue, the number
of running jobs, the number of queued jobs, and total job
queued time. The queue sensor also collects job-specific
information, such as walltime for individual jobs.

Elastic site uses various policies to determine when to boot
additional VMs in the cloud or terminate them based on the
information provided by the queue sensor. The policies form
the core decision-making process of elastic site. The policies
also use an estimated waste time that should be gathered for
possible cloud providers. The estimated waste time is simply
the sum of average startup times and shutdown times for a
particular VM image on a cloud. This waste is considered in

the decision making process implemented by policies. We have
created three initial policies for elastic site:

• On demand: The on demand policy is very basic: when
a new job is queued, the policy boots one VM. When
the queue is empty the policy terminates idle VMs.

• Steady stream: The steady stream policy assumes that
there will potentially be a "steady stream" of jobs
arriving in the queue, thus it always leaves at least one
VM running. By leaving one VM running this policy is
able to avoid the thrashing caused by the on demand
policy when a job arrives shortly after the last VM has
been terminated. The steady stream policy also boots
additional machines when the total queued walltime
becomes greater than five times the estimated waste
time of the particular cloud. However, the policy only
starts one machine at a time, i.e., it waits until a VM
has finished booting before it decides to boot another
VM. The policy terminates any additional machines
when the total queued walltime drops below three
times the estimated waste time of the cloud. With this
policy the cluster is able to respond to work
immediately, however, it is the most conservative to
adjust to changes in demand.

• Bursts: The bursts policy is intended for jobs that arrive
in bursts. Once a burst arrives we want to boot enough
machines so that the estimated waste time is balanced
appropriately with the amount of work in the queue.
Therefore, to calculate the number of VMs to launch,
we divide the total wall time of all queued jobs by two
times the estimated waste time. If the integer division
results in zero then a single VM is booted.

We believe that many other job arrival patterns also fall into
one of these three broad categories. For instance, sporadic job
arrivals should use the on demand policy or bursts policy. The
bursts policy will typically boot fewer VMs than the on
demand policy, however, if each of the jobs has a lengthy
runtime then the jobs should perhaps be assigned to their own
VMs, as attempted by the on demand policy. Furthermore, it
should be noted that these policy definitions are an initial test
set and not a comprehensive set encompassing all possible job
patterns. Our intent is not that these policies would prove to be
the best possible method for managing VMs, but instead that
they would provide a viable starting point in our examination
of an elastic cluster. Specifically, in the case of the steady
stream policy our choice to start additional VMs when the total
queued walltime is greater than five times the estimated waste
time and terminate VMs when the total queued walltime drops
below three times the estimated waste time is an initial attempt
to create a responsive but not wasteful policy aimed at a
particular job submission pattern. We expect that more
extensive examination will result in further adjustments to
these bounds.

In the following section we discuss implementation specific
details for our elastic site architecture.

III. IMPLEMENTATION
Our elastic site manager, written in Python, is built upon a

Linux cluster and the Torque batch scheduler. The elastic site

manager monitors the job queue and responds by either
launching a machine in the cloud, terminating one, or doing
nothing as shown in Figure 2. Once a cloud machine has
booted it joins the cluster as a worker node. If the cloud node
operating system and libraries do not match those of the head
node, applications can be linked statically, precompiled and
deployed on the cloud nodes and saved into the image, or
automatically compiled on the cloud node at deployment time.

We make a number of simplifying assumptions in our
prototype implementation. First, cloud nodes join as
independent remote nodes; we have not deployed an overlay
network, allowing the nodes to communicate with each other.
Thus, these nodes are only capable of running serial jobs or
small parallel jobs, limiting them to the execution of small
parallel programs or many serial programs, such as workflows
often categorized as Many Task Computing (MTC) [16].
Second, we do not mount a shared file system on the remote
nodes so all data must be transferred in and out from the node.
Currently this is done via Torque's use of SCP for file transfers.

A. Leveraged Technologies
Our elastic site implementation relies on IaaS technologies

such as EC2 [2] and the Nimbus Workspace Service [11]
deployed on Science Clouds [19]. The Nimbus Workspace
Service is responsible for deploying nodes on the Nimbus
cloud, as requested by the cloud client. The Workspace Service
initiates the transfer of the VM image from the storage pool to
the nodes. Once the VM image has been deployed, the
Workspace Service begins the boot process. As the nodes begin
to boot they enter the contextualization phase.

We rely on the Nimbus Context Broker [13] to provide
contextualization of the nodes. The Nimbus Context Broker
provides a secure mechanism for dynamically contextualizing a
set of virtual appliances. We use the Context Broker to create a
trusted environment between the newly deployed cloud worker
nodes and the cluster head node.

B. Adding a Resource to a Site Dynamically
Before we add a cloud resource to a site, we first create the

VM image and save it in the different clouds we will be
utilizing. We install all of the necessary software and libraries
as well as the Torque client software. Torque is free open-
source software, so there is no need to acquire licenses for the
cloud nodes. For simplicity, the Torque client (pbs_mom
process) is preconfigured to join the cluster head node on boot.
If there is an external firewall between the cloud and the cluster
head node, the necessary ports must be opened for Torque and
SSH to function properly. Opening ports in an external firewall
can be especially problematic if there isn't a static range of IP
addresses that cloud nodes will be associated with. One
alternative is to allow traffic from any IP over the necessary
ports to reach the head node. A host-based firewall can then be
used on the head node to open access dynamically to the cloud
nodes. The elastic site manager can interface directly with host-
based firewalls to open communication with the cloud nodes.
The current implementation includes support for iptables.

The Nimbus Context Broker handles the transfer of the
SSH keys from the booted cloud nodes to the cluster head
node. Elastic site then adds the keys (and associated hostnames

and IP addresses) to the global ssh_known_hosts file. For
simplicity, we preconfigured the cloud image to automatically
trust the cluster head node.

Elastic site uses the Nimbus cloud client to launch or
terminate nodes on Nimbus-based clouds or EC2. As this is an
initial prototype, elastic site also uses Torque command line
programs to monitor the queue and available nodes, as well as
dynamically add and remove nodes from Torque.

C. Implementation of the Queue Sensor and Policy Modules
Elastic site runs in a loop periodically examining the job

queue, executing a policy, and performing cluster management
functions, such as terminating nodes that have been flagged for
shutdown by the policy. Due to the time required to launch a
VM, we have created a thread pool to launch machines in
parallel. The threads (default of 10) work from a single “deploy
node” queue to launch machines. The short and consistent time
required to terminate a machine allows the main elastic site
thread to terminate nodes serially, when needed. In order to
avoid overloading the cluster head node with rapid calls to
system commands (e.g. qstat and pbsnodes), elastic site sleeps
for a duration specified by the cluster administrator. We have
found that sleeping for 10 to 15 seconds is a reasonable amount
of time to limit the impact on the head node as well as provide
a very responsive and dynamic cluster.

We have implemented a queue sensor to monitor the
Torque queue and gather job information. The queue sensor
parses the output of Torque's qstat command and stores the
information in a Python queue object that we have created. We
have also created a Python cluster object, which stores all of
the relevant information about the cluster, such as the number
of running cloud nodes and the number of cloud nodes that are
available for work. The cluster object also contains methods for
manipulating the cluster, such as launching or terminating
VMs.

Policies are implemented as individual Python modules.
Policies have access to the cluster and queue objects and can
use this representation of the system in order to determine if
additional nodes are needed or if nodes may be terminated. The
policies themselves are responsible for directly manipulating
the cluster object by calling methods to either launch VMs or

Figure 2. Elastic Site Implementation

!"#$%&'()&%*(+#,#-*.

+#&,(/.&0*.

!1*'2%*(34"&'5

+#,#-*(6"2$%*.

6"427(
8,9.#$%.2'%2.*

:;&<=2$(4.(!6>?

6"2$%*.(@2*2*
:A4.B2*? C4=(64<D"*%*$

/&$D#%'E(C4=

;47*(C4&,$(6"2$%*.

)%#.%(F()%4D(G+

)%#%2$

@2*.5H(ID7#%*)%#%2$

schedule them for termination. When a node is scheduled for
termination it is not terminated immediately, instead the node is
flagged offline by the Torque 'pbsnodes -o' command, allowing
a running job to complete. A node flagged offline is not
assigned additional work by Torque, which then allows the
elastic site program to terminate the node once it becomes idle.
This avoids the problem of killing the node prematurely and
possibly losing data. Currently, the estimated waste time is
represented as a single number, in seconds, which is the sum of
the time to boot a VM image on a particular cloud and the time
to terminate the VM. This number can simply be a best guess
to help policies make more intelligent decisions. The elastic
site manager doesn’t currently support a mechanism to specify
numerous estimated waste times, depending on the number of
nodes booting or differing VM image size, both of which may
impact boot time in cloud environments.

The policy framework of elastic site is meant to be
extensible, allowing administrators to customize or define their
own policies to fit the needs of their users. The primary reason
we choose to implement policies as Python modules instead of
creating our own policy definition language was to minimize
the learning curve for administrators adopting our solution. We
find that very detailed and customized languages are often too
complicated and frustrating for users to learn for a single
purpose, diminishing the desire of users wishing to adopt our
implementation of elastic site. Python is a widely used
language that is easy to learn and robust enough to define any
policy, no matter how simple or complicated.

IV. EVALUATION
Our evaluation of elastic site consists primarily of a

comparison of the three different policies in an attempt to
maximize job turnaround time while minimizing thrashing
(constantly launching and terminating VMs) and idle VMs
(VMs running with no available work). Comparing the
performance of different cloud providers, and by extension, the
underlying node hardware, network, and software deployed by
those providers is beyond the scope of our work. These topics
have been addressed elsewhere in the literature: [6], [9], [10],
[15], and [22].

The evaluation environment consists of a cluster head node
at the University of Colorado at Boulder. The head node has
two 2.4 GHz Intel Xeon processors with hyper-threading and 6
GB of RAM. We provide an initial comparison between the
Nimbus cloud at the UChicago and the cloud at IU; however,
we chose to use the UChicago cloud for the remainder of the
analysis since it provided a more consistent environment when
booting multiple VMs simultaneously. To demonstrate that our
elastic site implementation scales beyond a handful of nodes
we use Amazon EC2.

The IU cloud consists of 2 nodes. Each node has 2 Quad
Core Xeon processors with 32 GB of RAM and a single SATA
disk. The Nimbus cloud at the University of Chicago has 16
nodes, each with two 2.2 GHz AMD64 processors and 4 GB of
RAM. Each node also has a local 80 GB IDE disk. The storage
repository is exposed as a GridFTP service running on the
service node. For our analysis with the Nimbus cloud at
UChicago we specified a maximum of 10 cloud nodes. Thus, a
policy may choose to deploy up to 10 nodes, but no more.

To demonstrate scale we use Amazon EC2 small instance
machines, without specifying a maximum limit on the number
of nodes available to the elastic site. Small instances contain 1
virtual core (equivalent to a 1-1.2 GHz 2007 Xeon processor),
with 1.7 GB of memory, and only what Amazon denotes as
“moderate” I/O.

As a metric, we define elapsed workload time to be the
elapsed time between the arrival of the first job in the workload
to the completion of the final job in the workload. As another
metric we define overhead to be the amount of time VMs are
active but not running jobs. Startup and termination time are
considered overhead, as well as idle run time. Finally, we
define the metric queue wait time to be the amount of time a
job must wait in the queue before it begins execution. This
includes the time from when the job was first submitted until it
is dispatched by Torque to the worker node and begins running.

In addition to these metrics we consider the reactiveness of
the three policies. We define the reactiveness of a policy to be
its ability to respond quickly and effectively to changes in
demand. In our analysis we observe the reactiveness of all three
policies for three unique workloads that consist of job arrival
patterns specific to the policy.

Our workloads use short running jobs because of our
interest in evaluating and analyzing the overhead and
reactiveness of the policies. Longer running jobs simply
amortize the boot and termination overhead of the VMs, thus a
two minute boot time is basically irrelevant if you are running a
24-hour job.

Jobs are submitted directly to the Torque queue on our
cluster head node. A job consists of a small C program that
sleeps for the desired time. The only input is a parameter
passed to the program specifying the sleep time and the only
output is the small error and output files generated by Torque,
which are transferred back to the head node via SCP. The job
walltime is set to be one minute more than the runtime of the
job.

A. Understanding the Characteristics of Launching and
Terminating Cloud Nodes
Prior to our evaluation of the policies we must first

understand the basic characteristics of the cloud provider we
intend to use. We are primarily interested in the amount of time
required to start a VM and shutdown a VM. We have found
that termination time is often under 10 seconds and relatively
consistent across clouds since it involves a Web service
invocation which returns after the termination process has
begun. The startup time, however, varies between providers
depending on the underlying hardware and network as well as
the configuration of the cloud. For example, if a cloud caches a
recently used VM image on the nodes it will achieve much
quicker boot times on average than if the VM image must be
transferred from a storage pool to the nodes for every boot. The
number of nodes also impacts startup time as well as the size of
the VM image. We have found that these are primarily related
to the network between the nodes and the storage pool: a large
VM image takes longer to transfer and multiple nodes booting
cause contention on the network. Another factor that may
impact boot time is the amount of configuration that must be

done during the contextualization phase, especially if
information must be exchanged between large numbers of
nodes. Lastly, the demand on the cloud at a given time can also
impact the responsiveness of the cloud. A heavily utilized
cloud will have more network contention as many users
attempt to boot nodes. The cloud may also oversubscribe nodes
to meet heightened demand.

These differences in boot time are clearly demonstrated by
a comparison of the boot time on the UChicago cloud vs. the
IU cloud as shown in Figure 3. The IU cloud can boot a single
VM approximately 34 seconds quicker than the UChicago
cloud. However, interestingly, when both clouds boot five
VMs, the UChicago cloud (Figure 5) slows down consistently
across all five VMs whereas on IU (Figure 6) one VM still
boots around 60s. The remaining four VMs on IU slow down
significantly more, talking almost 20 seconds longer than all
five UChicago VMs. We suspect that the unique behavior on
the IU cloud is due to the underlying hardware. In particular,
each of the two nodes only has a single SATA disk. On both
the UChicago cloud and the IU cloud we observed termination
times of 6 seconds plus or minus a second.

B. Evaluation of the Policies
We have devised two workloads to evaluate the metrics.

The first workload consists of a submission of 20 60-second
jobs. This workload demonstrates a potential use case for the
bursts policy. The second workload consists of submitting 10

60-second jobs 30 seconds apart followed by five minutes of
sleeping. Then 10 120-second jobs are submitted 10 seconds
apart. This workload is considered a potential use case for the
steady stream policy. As a baseline we also submit these
workloads to a cluster in which, prior to submission, we launch
10 machines and integrate them into the cluster; this is referred
to as the dedicated policy.

The elapsed workload time is shown in Figure 7. The
dedicated policy processes both workloads in the least amount
of time; this is to be expected since there are 10 VMs booted
and available when the jobs are submitted. The slight
differences between the on demand policy and the bursts
polices are interesting: both policies attempt to boot enough
VMs to process the jobs with the on demand policy simply
booting one VM per queued job (until 10 VMs have been
launched) whereas the bursts policy weighs the total queued
walltime with the estimated waste time for launching a VM.
Because 20 jobs are submitted in workload 1 the on demand
policy boots the maximum number of VMs, 10, and the bursts
policy only boots 6 VMs yet processes the workload in less
time. Booting more VMs takes additional time so the bursts
policy is able to start processing the workload before the on
demand VMs finish booting. The elapsed workload time for
these policies is reversed under workload 2. In this case both
policies are able to process the first set of jobs and terminate
the VMs, when the second batch of 10 120 seconds arrive the
on demand policy boots 10 VMs, one machine for each job,

Figure 3. Comparison of startup times (with standard deviation) for 1 VM
on the Nimbus clouds at the University of Chicago and Indiana University.

Figure 4. Actual queue wait time, in seconds. All jobs are one minute jobs
with two minute walltimes, submitted simultaneously.

Figure 5. Startup times of 5 VMs (with standard deviation), launched

simultaneously, on the Nimbus cloud at the University of Chicago.
Figure 6. Startup time of 5 VMs (with standard deviation), launched

simultaneously, on the Nimbus cloud at Indiana University.

UChicago Indiana

Se
co
nd
s

0

20

40

60

80

100

Job Number
0 10 20 30 40 50 60

Ac
tu

al
 Q

ue
ue

 W
ai

t T
im

e
(s

)

0

200

400

600

800

1000

On Demand Policy
Steady Stream Policy
Bursts Policy

VM 1 VM 2 VM 3 VM 4 VM 5

Se
co

nd
s

0

20

40

60

80

100

120

140

160

180

VM 1 VM 2 VM 3 VM 4 VM 5

Se
co

nd
s

0

50

100

150

200

and the bursts policy boots seven VMs. Because of the longer
runtime, 10 VMs are able to process the workload faster.

Figure 8 shows the corresponding overhead for the two
workloads. The overhead presented in the figure is the sum of
the overhead for all machines utilized. It should be noted that
the dedicated case for workload 1 is somewhat misleading.
Overhead is only calculated as the overhead that is incurred
during the actual test, which is the duration from the time the
first job is submitted to the time the final job completes.
Understandably, the dedicated policy, with 10 running VMs, is
able to quickly process the entire workload with very minimal
overhead. Workload 2 is a more accurate representation of the
overhead associated with a dedicated set of always-on
machines where there may be large periods of time that
numerous machines remain idle.

Perhaps the most interesting comparison is between the
steady streaming policy overhead and run time for workload 2.
This is a perfect example of the need to balance job turnaround
time with system overhead. Even though the steady stream
policy achieves minimal overhead, it takes the most time to
process the workload. The reason for this is due to the fact that
the steady stream policy is the most conservative policy when
adjusting to changes in demand, thus, to process the workload
it uses the least number of VMs, which reduces unnecessary
overhead booting extra VMs, but it also means that the
workload takes longer to process. Though none of our policies
out perform the dedicated policy, we are able to achieve lower
levels of overhead than the dedicated policy as demonstrated
by workload 2.

Figure 4 shows the queue wait time for the three policies
for a test similar to workload 1, we submitted an additional 40
jobs to show the contrast between the three policies. Initially
jobs have the shortest queue wait times when using the steady
stream policy since one machine is constantly running,
awaiting work. Both the on demand and bursts policies must
first boot nodes before jobs can begin executing. This
demonstrates the conservative aspect of the steady stream
policy. While the bursts and on demand policy boot enough
machines to address the total demand in the queue, the steady

stream policy slowly processes the jobs and boots one VM at a
time until it determines that no more machines are needed.
Thus, in the case of the steady stream policy we see a point
where the queue wait time of the jobs exceeds the wait time of
those being processed by the on demand and bursts policy.

C. Reactiveness of Policies
To examine the reactiveness of the policies we devised

three reactivity tests, each with unique job submission patterns.
The first test emphasizes the sporadic nature of job arrivals
addressed by the on demand policy. Ten jobs, each with a
runtime randomly chosen between one and ten minutes are
submitted at random times over the course of an hour. The
second test, aimed at the steady stream policy where jobs arrive
in a relatively consistent and steady manner, consists of a 15
minute interval where one to ten minute jobs arrive three
minutes apart, followed by a 15 minute period with only two
one to ten minute jobs. The final 30 minutes of the test is
comprised of one-minute jobs arriving once per minute. The
third test is comprised of bursts of job submissions: 40 one to
five minute jobs are submitted, followed 20 minutes later 15
ten minute jobs, which are followed 20 minutes later by 60 one
minute jobs.

Figure 9 clearly shows the ability of the on demand policy
to react to the queue by matching the number of VMs with the
number of jobs. The one to two minute delays between jobs
and VMs is the time that the VM is booting. Figure 10
demonstrates the ability of the steady stream policy to use a
minimum number of VMs to constantly process jobs, while
booting additional VMs to process additional jobs when
needed. Finally, in Figure 11 the bursts policy boots the
necessary number of VMs to process bursts of jobs,
terminating the VMs as the queue drains. Due to the large
number of jobs submitted the policy boots 10 machines for
each bursts and then terminates them when the burst of jobs has
been processed. In Figure 11, the running VMs in the second
burst of jobs overlap with jobs from the third burst because the
VMs were flagged to be terminated prior to the arrival of the
third set of jobs. Once a VM has been flagged for termination
(i.e. the policy determines that the VM should be terminated

Figure 7. Elapsed time (seconds) of the workload, from submission of the
first job to completion of the final job. For the dedicated policy 10 VMs are

started prior to submission and run for the duration of the test.

Figure 8. Total overhead per policy. Overhead shown is the sum of the
overheads for all VMs associated with each workload and policy.

Workload 1 Workload 2

Se
co

nd
s

0
100
200
300
400
500
600
700
800
900

1000
1100

OD ODSS SSBT BTDD DD

OD = On Demand
SS = Steady Stream

BT = Bursts
DD = Dedicated

Workload 1 Workload 2

Se
co

nd
s

0

1000

2000

3000

4000

5000

OD ODSS SSBT BTDD DD

Shutdown Time
Idle Time
Startup Time

OD = On Demand
SS = Steady Stream

BT = Bursts
DD = Dedicated

when it has finished running its assigned jobs), our current
system does not allow the VM to be “unflagged.” Instead, the
machine is terminated and another VM must be booted in its
place if there is enough work remaining to justify additional
resources.

D. Scalability of Elastic Site
To demonstrate the scalability of our elastic site

implementation we submit the third reactivity test with 10
times the number of jobs to an elastic cluster with EC2
compute nodes. The workload consists of 400 one to five
minute jobs submitted initially and 20 minutes later 150 ten
minute jobs are submitted, followed 20 minutes later by 600
one minute jobs. We do not limit the number of VMs available
to the elastic site manager. We used the bursts policy for this
test.

In switching to EC2 we made one change to our default
configuration: we reduced the number of VM launching
threads in the thread pool to six, down from 10, in order to
reduce the strain on our cluster head node. Ten threads were
manageable when we only used the Nimbus cloud client and it
was only possible to boot a total of 10 VMs. However, the
addition the EC2 Java-based tools and the possibility to launch
machines continually, for the duration of the test, produced a
noticeable and lasting increase in load on the head node.

Prior to test submission we launched a handful of VMs on
EC2 to gather startup and shutdown times for EC2 nodes. EC2
exhibited much more inconsistent boot times than our Nimbus
clouds. We launched a handful of VMs and observed boot
times varying from 74 seconds to 205 seconds. Termination
invocation times were consistently around three to four
seconds. Our evaluation with EC2 (Figure 12) shows that
elastic site able to process 10 times the number of jobs within
60 minutes, similar to our much smaller test case on the
UChicago cloud. However, EC2 grows up to 151 VMs in order
to accomplish this. We see an increase in approximately 15
times the number of VMs to process 10 times the work over the
60-minute interval.

V. RELATED WORK
Related work can broadly be grouped into two categories:

solutions that dynamically adapt to changing demand by
acquiring or releasing resources and solutions that integrate
with cloud computing resources to provide additional compute
or storage capacity when needed.

VioCluster [18] is a solution that adjusts dynamically to
demand by borrowing and lending machines between different
clusters. Typically, these clusters would be standard physical
clusters where borrowed machines are provided as VMs on top
of available physical nodes. Thus it is possible for a domain to
be comprised of physical and virtual nodes. The

Figure 9. Reactiveness of the On Demand Policy Figure 10. Reactiveness of the Steady Stream Policy

Figure 11. Reactiveness of the Bursts Policy Figure 12. Reactiveness of the Bursts Policy on Amazon EC2

Minute
0 10 20 30 40 50 60

C
ou

nt

0

1

2

3

4

5

VMs Running
Total Jobs (Queued or Running)

Minute
0 10 20 30 40 50 60 70

C
ou

nt

0

1

2

3

4

VMs Running
Total Jobs (Queued or Running)

Minute
0 10 20 30 40 50 60

C
ou

nt

0
4
8

13
18
23
28
33
38
43
48
53
58
63
68
73
78

VMs Running
Total Jobs (Queued or Running)

Minute
0 20 40 60 80 100

C
ou

nt
0

100

200

300

400

500

VMs Running
Total Jobs (Queued or Running)

implementation is based upon Portable Batch System (PBS)-
based clusters and User Model Linux (UML). Violin provides a
network overlay allowing the VMs of a remote domain to
communicate directly with physical nodes in the local domain.
VioCluster calculates whether to borrow machines (or whether
it has machines available to lend) by counting the number of
requested nodes in the queue and subtracting the number of
available machines in the cluster. If the number is positive then
this is the number of machines that need to be borrowed, if the
number is negative then it is the number of machines the
cluster has available to lend. Elastic site doesn’t borrow or lend
machines; instead we only acquire nodes from the cloud when
needed. The primary advantage of utilizing the cloud is its
ability to offer a seemingly infinite number of resources, on
demand, to anyone at anytime. There is no need to identify
other independent clusters, which may or may not contain
available nodes.

Ruth et al. [17] create an adaptive environment of VMs that
is able to adjust the environment based on measuring the
current load within the VMs. Their adaptation manager can
make per-host CPU and memory adjustments, migrate VMs to
different nodes, or move an entire virtual environment to
another set of resources. Our approach extends existing
resources with cloud resources based on overall demand, which
differs from their focus on creating individual, autonomous,
adaptive environments capable of dynamically adjusting to
load within the VMs.

Murphy et al. [14] create a system to dynamically provision
virtual organization clusters. The system is similar to our
implementation in that they monitor a job queue and spawn
VMs to process the jobs. The authors’ solution creates virtual
clusters on Grid resources to process Condor jobs. Our work
differs in several key aspects. We leverage cloud resources to
extend site resources. Our model is generic and can be applied
to any datacenter service even though our implementation
specifically extends the Torque scheduler with cloud resources.
We also create a handful of policies to dynamically respond to
demand in an attempt to maximize job turnaround time and
minimize overhead. The authors’ create and evaluate a single
policy that corresponds to our on demand policy.

Assuncao et al. [4] focus on scheduling strategies for
individual jobs and the effect of those scheduling strategies on
the overall cost of utilizing a cloud to provide compute
resources in addition to existing site resources. Thus,
depending on the scheduling strategy and job requirements,
jobs are placed in a site queue or cloud queue. This differs from
our approach where we schedule the actual creation and
termination of VM instances in response to changes in a single
queue. We allow Torque to dispatch the jobs on the resources.
We do not consider the effect of individual job scheduling
strategies on our system; this is an item to be considered in
future work. Our policies focus solely on launching and
terminating cloud VM instances in an attempt to maximize job
turnaround time while minimizing the associated VM
overhead.

Evangelinos et al. [6] use on demand Amazon EC2 clusters
as a platform to execute climate models. The authors create an
interactive application capable of spawning EC2 nodes to

execute the models. This is an example of an application-
specific extension to integrate support for a specific cloud. Our
approach is more general, elastic site can be extended to
monitor demand for any number of underlying applications as
well as support a wide variety of clouds. Once elastic site
supports a particular cloud provider, that provider can be made
available to any application that can be monitored by elastic
site.

Recently, Sun Microsystems has added support for Amazon
EC2 into Sun Grid Engine (SGE) [20]. This is a scheduler
specific approach to dynamic cloud integration since only the
demand of a single scheduler is monitored. Though our current
implementation only supports the Torque resource manager, it
can easily be extended to monitor any number of underlying
schedulers or applications.

In May of 2009 Amazon released Amazon CloudWatch [1],
which enables EC2 users to monitor their usage on EC2. It also
provides an auto-scaling feature allowing users to dynamically
acquire or release EC2 instances depending on the load.
However, this feature is specific to Amazon EC2, whereas our
elastic site implementation can integrate extensibility sensors
from multiple sources and work with multiple cloud
implementations. Our solution also creates a secure context
among the resources by leveraging the Nimbus Context Broker.

VI. FUTURE WORK
Our current implementation is only an initial prototype

focused specifically on Torque-based clusters, Nimbus clouds,
and Amazon EC2. In future work we will add support for
additional resources managers and cloud providers. We will
also address our assumption that the cloud nodes are isolated
from each other and unable to perform collectively by
leveraging network overlay solutions. Our implementation only
supports the exchange of input and output data via Torque’s
SCP capacities, future work could involve the creation and
evaluation other methods to support data exchange between
local resources and cloud resources, for example, a remote
shared file system could be made available to cloud nodes.

Our initial policy definitions are not comprehensive and it
is likely that they will be modified to improve their efficiency
for many types of job patterns. For example, one method might
be to increase the responsiveness of a particular policy on
clouds with quick VM boot and termination times. The
evaluation of our initial policies also provide insight into other
factors that should be thoroughly examined in future work,
such as more effective methods to identify and integrate a
cloud’s estimated waste time in cases where it varies widely,
e.g. EC2. Our policies do not currently consider economic
factors, such as Amazon’s charge-by-the-hour model where an
EC2 instance running for 5 minutes costs the same as one
running for 59 minutes. Policies should take this into account
and leave a VM that’s been charged for an hour running for the
duration of the hour, even if there is no available work.
Currently, the selection and configuration of policies is done
manually. A more effective method would be to create a layer
on top of the policies capable of evaluating incoming demand
and dynamically choosing the appropriate policy on the fly.
Similarly, users could provide estimations for parameters like
waste time; this would allow policies to make more intelligent

decisions. Future work will also focus on the impact of job
scheduling strategies to more effectively manage the placement
of jobs on compute nodes.

More generally, our elastic site model will be extended
beyond typical cluster resources to support other services
provided within a site, such as Web services and storage
archives. Recent research also [12] focuses on bridging
multiple cloud providers and using the resources together as a
single entity, which would allow elastic site to provide a single
extension to a site leveraging resources from multiple cloud
providers.

VII. CONCLUSIONS
In this work we propose a model of an elastic site capable

of responding to changes in demand by leveraging cloud
resources. We create an implementation of this model that
seamlessly and securely extends Torque clusters with Nimbus-
based clouds and Amazon EC2 on demand. We devised three
policies, on demand, steady stream, and bursts to respond
intelligently to changes in demand by acquiring or terminating
cloud resources.

We evaluate the policies under different workloads and
examine their reactiveness to different job submission patterns.
We also demonstrate that we can process 10 times faster by
expanding our cluster up to 150 EC2 nodes.

ACKNOWLEDGMENTS
This work was supported by NSF CSR award #527448 and,

in part, by the MCS Division subprogram of the Office of
Advanced Scientific Computing Research, SciDAC Program,
Office of Science, U.S. Department of Energy, under Contract
DE-AC02-06CH11357. We would like to thank David
LaBissoniere for his help and advice about the internals of the
Nimbus toolkit and Nimbus Context Broker as well as his
assistance with the configuration, deployment, and
management of nodes on Amazon EC2. We would also like to
thank John Valdes for setting up the initial Torque worker node
on the Nimbus cloud as well as all of his help and advice
configuring Torque nodes in a dynamic and secure manner.
Also, thanks to Joe Rinkovsky at Indiana University for his
assistance with the Nimbus cloud at IU.

REFERENCES
[1] Amazon CloudWatch. Amazon, Inc. [Online]. Retreived February 7,

2010, from: http://aws.amazon.com/cloudwatch/
[2] Amazon Web Services. Amazon.com, Inc. [Online]. Retreived February

7, 2010, from: http://www.amazon.com/aws/
[3] Argonne National Laboratory Press Release. [Online]. "Nimbus and

cloud computing meet STAR production demands," Retreived February
7, 2010, from:
http://www.anl.gov/Media_Center/News/2009/news090402.html

[4] Assuncao, M.D., A.D. Costanzo, and R. Buyya, "Evaluating the cost-
benefit of using cloud computing to extend the capacity of clusters,"
High Performance Distributed Computing, 2009.

[5] Bode, B., D. Halstead, R. Kendall, Z. Lei, W. Hall, and D. Jackson. The
Portable Batch Scheduler and the Maui Scheduler on Linux Clusters.
Usenix, 4th Annual Linux Showcase and Conference, 2000.

[6] Evangelinos, C., C. Hill. “Cloud Computing for Parallel Scientific HPC
Applications: Feasibility of Running Coupled Atmosphere-Ocean
Climate Models on Amazon’s EC2,” The First Workshop on Cloud
Computing and its Applications (CCA’08), October 2008.

[7] Foster, I., C. Kesselman, S. Tuecke. The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. In the International Journal of High
Performance Computing Applications, Vol. 15, No. 3, pages 200-222,
2001.

[8] Foster., I. Globus Toolkit Version 4: Software for Service-Oriented
Systems. In IFIP International Conference on Network and Parallel
Computing, pages 2–13, 2005.

[9] Gavrilovska, A., S. Kumar, K. Raj, V. Gupta, R. Nathuji, A. Niranjan,
and P. Saraiya, “High-Performance Hypervisor Architectures:
Virtualization in HPC Systems,” In 1st Workshop on System-level
Virtualization for High Performance Computing (HPCVirt 2007).

[10] Huang, W., J. Liu, B. Abali, and D. K. Panda, A Case for High
Performance Computing with Virtual Machines. In Proceedings of the
20th Annual International Conference on Supercomputing, Queensland,
Australia, 2006.

[11] Keahey, K., I. Foster, T. Freeman, and X. Zhang. Virtual Workspaces:
Achieving Quality of Service and Quality of Life in the Grid. Scientific
Programming Journal, vol 13, No. 4, 2005, Special Issue: Dynamic
Grids and Worldwide Computing, pp. 265-276.

[12] Keahey, K., M. Tsugawa, A. Matsunaga, J. Fortes, "Sky Computing,"
Internet Computing, IEEE , vol.13, no.5, pp.43-51, Sept-Oct 2009.

[13] Keahey, K., T. Freeman, Contextualization: Providing One-Click Virtual
Clusters, eScience 2008, Indianapolis, IN. December 2008.

[14] Murphy, M., B. Kagey, M. Fenn and S. Goasguen "Dynamic
Provisioning of Virtual Organization Clusters" 9th IEEE International
Symposium on Cluster Computing and the Grid, Shanghai, China, May
2009.

[15] Napper, J. and P. Bientinesi. Can cloud computing reach the Top 500?.
In Proceedings of the Combined Workshops on Unconventional High
Performance Computing Workshop Plus Memory Access Workshop,
Ischia, Italy, May 18-20, 2009.

[16] Raicu, I., and I. Foster. Many-Task Computing for Grids and
Supercomputers. IEEE Workshop on Many-Task Computing on Grids
and Supercomputers (MTAGS08), 2008.

[17] Ruth, P., J. Rhee, D. Xu, R. Kennell, and S. Goasguen. Autonomic live
adaptation of virtual computational environments in a multi-domain
infrastructure. IEEE International Conference on Autonomic Computing,
2006.

[18] Ruth, P., P. McGachey, D. Xu. VioCluster: Virtualization for Dynamic
Computational Domains, Cluster Computing, 2005. IEEE International,
pages 1-10, Sept. 2005.

[19] Science Clouds. [Online]. Retreived February 7, 2010, from:
http://www. scienceclouds.org/

[20] Sun Grid Engine. Sun Microsystems. [Online]. Retreived February 7,
2010, from: http://www.sun.com/software/sge/

[21] TeraGrid. [Online]. Retreived February 7, 2010, from:
http://www.teragrid.org/

[22] Walker, E. Benchmarking Amazon EC2 for high-performance scientific
computing, Retreived February 7, 2010, from:
http://www.usenix.org/publications/login/2008-10/openpdfs/walker.

